Studies on Interaction of Isocyanide with Transition Metal Complexes. XIII.¹⁾ Preparation of Carbene Complexes of Nickel, Iron, and Cobalt through Protonation of Monoimino and Polyimino Type Complexes

Yasuhiro Yamamoto and Hiroshi Yamazaki
The Institute of Physical and Chemical Research, Wako-shi, Saitama 351
(Received July 7, 1975)

Reactions of η -C₅H₅Ni(CNR¹)[C(R)=NR¹] (R=CH₃, ρ -ClC₆H₄; R¹=C₆H₁₁, (CH₃)₃C) and η -C₅H₅Fe(CO)₂-[C(CH₂C₆H₄X- ρ)=NC₆H₁₁] (X=H, Cl) with HBF₄ gave the cationic carbene complexes, η -C₅H₅Ni(CNR¹)-[C(R)NHR¹]BF₄ and η -C₅H₅Fe(CO)₂[C(CH₂C₆H₄X- ρ) NHC₆H₁₁]BF₄. η -C₅H₅Co[-C(=NR)-CPh-CPh-C(=NR)-] (**1a**; R=2,6-(CH₃)₂C₆H₃: **1b**; R= ρ -CH₃C₆H₄) reacted with HBF₄ to give η -C₅H₅Co[-C(NHR)-CPh-CPh-C(=NR)-]BF₄ (**2a**, **b**). Compound **2a** exists as two isomers, induced by the restricted rotation about the C-N bond. Treatment of **1a** with HCl gave η -C₅H₅Co[-C(NHR)-CPh-C(=NR)-]Cl (**3b**). The H(N) proton showed some fluxional behavior in its proton NMR spectrum. Reaction of **1b** with CF₃COOH gave the dicationic complex η -C₅H₅Co[-C(NHR)-CPh-C(NHR)-](CF₃COO)₂ **4b**. Compound **2** reacted with R¹NC(R¹=(CH₃)₃C, 2,6-(CH₃)₂C₆H₃) to give η -C₅H₅Co(CNR¹)[-C(=NR)-CPh-C(=NR)-]**5**. Reaction of **5** with HBF₄ gave again the cationic carbene complex η -C₅H₅Co(CNR¹)[-C(NHR)-CPh-C(=NR)-]BF₄.

Since the current interest of the metal-stabilized carbene complexes started with the preparation of W[C(OCH₃)Ph](CO)₅,²⁾ several preparative methods of the carbene complexes have been reported.^{3–5)} Among them, the acetyl complexes of iron, molybdenum, and ruthenium are known to take up a proton or a carbonium ion to give the corresponding cationic carbene complexes, when reacted with protic acids or trialkyloxonium salt (Eq. (1)).^{6,7)}

$$\mathbf{M} - \mathbf{C} - \mathbf{R} + \mathbf{R}^{1+} \longrightarrow [\mathbf{M} \leftarrow \mathbf{C} - \mathbf{R}]^{+} \qquad (1)$$

$$\mathbf{O} \qquad \qquad \mathbf{O} \mathbf{R}^{1}$$

One would expect that more facile protonation of the imino type complex in comparison with the acetyl derivative may occur because of the higher inherent basicity of nitrogen over oxygen. Treichel et al. reported briefly that the reaction of Pt(PPh₃)₂I[C(Ph)=NCH₃] with NH₄+ produced Pt(PPh₃)₂I[C(Ph)NH-CH₃]+.9) Lappart and coworkers reported recently that treatment of rhodium complexes with imidoyl chloride in the presence of hydrogen chloride gave the carbene complexes.9,10) This reaction has been believed to proceed with protonation of the imino complex formed as the unstable intermediate.

We report in this paper that the imino type compounds of nickel, ¹¹⁾ iron, ^{12,13)} and cobalt ¹⁴⁾ react readily with protic acids to give stable cationic carbene complexes.

Experimental

All reactions were carried out under an atmosphere of nitrogen. Melting points were taken on a Mitamura capillary melting point apparatus, and are uncorrected. Infrared spectra were recorded on a Shimadzu IR-27G spectrophotometer. Proton magnetic resonance spectra were obtained on JEOL C-60HL or Varian HA-100B spectrometers, using tetramethylsilane as an internal reference. Isocyanides¹⁵⁾ were prepared by procedures described in the literature. The organometallic complexes, η -C₅H₅Ni-(CNR¹)[C(R)=NR¹] (R=CH₃, Ph or ρ -ClC₆H₄; R¹=C₆H₁₁ or (CH₃)₃C),¹¹¹) η -C₅H₅Fe(CO)₂[C(CH₂C₆H₄X- ρ)=NC₆H₁₁] (X=H or Cl)¹²), η -C₅H₅Fe(CO)[-C(=NC₆H₁₁)-

 $C(NHR^1)-C(R)-C(NHR^2)] \ (R=H \ or \ Ph; \ R^1=C_6H_{11} \ or \ CH_3)_3C; \ R^2=(CH_3)_3C \ or \ C_6H_{11})^{13)} \ and \ \eta-C_5H_5Co[-C(=NR)-CPh=CPh-C(=NR)-] \ (R=(CH_3)_3C, \ p-CH_3C_6H_4 \ or \ 2,6-(CH_3)_2C_6H_3)^{14)},$ were prepared according to the published methods.

Preparation of Carbene Complexes. (a) η - $C_5H_5Ni(CNC_6$ - H_{11})[$C(C_6H_4Cl-p)NHC_6H_{11}$] BF_4 . A mixture of η -C₅H₅- $Ni(CNC_6H_{11})[C(C_6H_4Cl-p)=NC_6H_{11})$ [0.22 g, 0.5 mmol), 42% HBF₄ (3 ml) and benzene (15 ml) was stirred for 1 hr at room temperature. The reddish orange solution changed to dark yellow. The benzene layer was separated and the aqueous layer was extracted twice with CH2Cl2 (5 ml). The combined extracts were washed with water and dried over anhydrous magnesium sulfate. The solvent was evaporated almost to dryness under reduced pressure, and the residue was crystallized from CH₂Cl₂-n-hexane at -30 °C to give the dark yellow crystalline material (0.22 g, 82%). Other nickel carbene complexes were also prepared according to procedures similar to those described above.

(b) η -C₅H₅Fe(CO)₂[C(CH₂Ph)NHC₆H₁₁]BF₄. A mixture of η -C₅H₅Fe(CO)₂[C(CH₂Ph)=NC₆H₁₁] (0.7 g, 1.9 mmol), 42% HBF₄ (2 ml) and benzene (15 ml) was stirred for 2 hr at room temperature. Yellow crystalline material was separated. Methylene chloride was added to dissolve the crystals. The organic layer was washed with water and dried over MgSO₄. The solvent was removed *in vacuo* and the residue was crystallized from CH₂Cl₂-n-hexane at -30 °C to give yellow crystals (0.77 g, 85%). Other iron carbene complexes were also prepared according to procedures similar to those described above.

(c) η -C₅H₅Co[-C{=NC₆H₃(CH₃)₂-2,6}-CPh=CPh-C{NHC₆-H₃(CH₃)₂-2,6}-]BF₄. A mixture of η -C₅H₅Co[-C{= NC₆H₃(CH₃)₂-2,6}-CPh=CPh-C {=NC₆H₃(CH₃)₂-2,6}-] (0.18 g, 0.32 mmol), 42% HBF₄ (1 ml) and benzene was stirred at room temperature for 1 hr. The resulting orange crystals were filtered and washed with ether (0.18 g, 86%).¹⁶)

(d) $\eta - C_5H_5Co[-C(=NC_6H_4CH_3-p)-CPh=CPh-C(NHC_6H_4-CH_3-p)-]Cl$. A mixture of η -C₅H₅Co[-C(=NC₆H₄CH₃-p)-CPh=CPh-C(=NC₆H₄CH₃-p)-] (0.16 g, 0.3 mmol) and 6M-HCl (4 ml) was kept at room temperature for 2 hr. The orange layer changed to pale yellow. The resulting brown crystalline solid was filtered off, washed with water, and then extracted with benzene. After drying over Na₂SO₄, the solvent was removed under reduced pressure, and the residue was crystallized from *n*-hexane to give the title compound (0.095 g, 56%) as brown crystals,

(e) η - $C_5H_5Co[-C(NHC_6H_4CH_3-p)-CPh=CPh-C(NHC_6H_4-CH_3-p)-](CF_3COO)_2$. To a solution of **1b** (0.12 g, 0.22 mmol) in CH₂Cl₂ (2 ml) was added CF₃COOH (0.2 ml) at room temperature. The resulting dark brown solution was concentrated to 1 ml under reduced pressure, and n-hexane was added. The dark brown crystals (0.17 g, 85%) were filtered off.

Reaction of η -C₅H₅Ni(CNC₆H₁₁)[C(Ph)NHC₆H₁₁]BF₄ with CH₃ONa. A mixture of the carbene complex (0.075 g, 0.13 mmol), CH₃ONa (0.1 g), and CH₃OH (10 ml) was stirred at room temperature for 30 min. The solution changed rapidly from dark yellow to reddish brown. The solvent was evaporated, and the residue was dissolved with CH₂Cl₂. The solution was washed with water and dried over Na₂SO₄. Removal of the solvent and crystallization of the residue from benzene–n-hexane gave η -C₅H₅Ni(CNC₆H₁₁) [C(Ph)=NC₆H₁₁] (0.84 g, 83%).

Analogous procedures were applied for the deprotonation reactions of the iron and cobalt carbene complexes.

Reaction of 2a with $(CH_3)_3CNC$. A mixture of 2a (0.25 g, 0.38 mmol) and tert-butyl isocyanide (0.83 g, 1.0 mmol) in THF (15 ml) was kept at room temperature for 20 hr, followed by removal of the solvent and dark orange crystals of 5a $(0.19 \text{ g}, 73\%; \text{mp } 234-236 \,^{\circ}\text{C}$ (decomp. with melting)). The infrared spectrum consisted of 2153-(N≡C), 1623(C=N), and 1584 cm⁻¹(C-N). The proton NMR spectrum in CDCl₃ showed four singlets at 1.48(s, $(CH_3)_3)$, 2.17(CH₃), 2.23(CH₃), and 4.41(C₅H₅) ppm, and a complex signal at ca. 7.00 (C₆H₅ and C₆H₃) ppm. Found: C, 77.65; H, 6.41; N, 6.34%. Calcd for C₄₂H₄₂N₃Co: C, 77.88; H, 6.54; N, 6.49%.

Kinetic Analysis. The methods developed by Gutowsky and Holm was applicable for the determination of the kinetic parameters.¹⁷⁾ The difference between the chemical shifts of the methyl protons of the two isomers at various temperatures are listed in Table 1.

Table 1. Chemical shift differences for methyl protons in **2a** at various temperatures

Temp. (°C)	$\delta\omega_{\rm e}$ (cycles s ⁻¹)
-10	43
28	37
36	33
45	30
48	26.5
52	22
59	14

Results and Discussion

Nickel Carbene Complexes. Imino type complexes of nickel react with an excess of HBF₄ in benzene or CH₂Cl₂ at room temperature to produce the cationic carbene complexes (Eq. (2)), which undergo deprotonation by alkyllithium or CH₃ONa to recover the parent imino type complexes.

$$\begin{array}{c|c} \eta\text{-}\mathrm{C}_5\mathrm{H}_5\mathrm{Ni} & \xrightarrow{\mathrm{HBF}_4} & \xrightarrow{\mathrm{HBF}_4} \\ \mathbf{C} - \mathbf{R} & \xleftarrow{\overset{\mathrm{R}^2\mathrm{Li} \text{ or }}{\overset{\mathrm{CH}_3\mathrm{ONa}}{\overset{\mathrm{CN}}{\overset{\mathrm{CNR}^1}}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CN}}}{\overset{\mathrm{CN}}}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CNR}^1}{\overset{\mathrm{CN}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C$$

(2)

These compounds are freely soluble in methylene chloride and acetone, but less soluble in benzene. The infrared spectra show the strong NH-stretching bands at 3300—3100 cm⁻¹, which shift to 2700—2500 cm⁻¹ on deuteration. The isocyanide absorptions are observed in the range of 2200—2500 cm⁻¹, which are 40—70 cm⁻¹ higher than those for the neutral parent compounds.

The proton NMR spectra of these complexes indicate the presence of isomers. The spectrum of η -C₅H₅Ni-[CNC(CH₃)₃][C(Ph)NHC(CH₃)₃]BF₄ shows a pair of signals for each of the following: C₅H₅, (CH₃)₃CN=, and (CH₃)₃CNH– protons (the isomer ratio 3:1). This is reasonably explained in terms of the orientation of the N-H group. The hydrogen atom could assume either a *cis* or a *trans* orientation to the metal group with respect to the C-N bond, as follows:

Analogous isomerism was observed in the $[(p\text{-chlorophenyl})(N\text{-}tert\text{-}butylamino})]$ carbene complex (the isomer ratio 1.7:1). The $[(alkyl \text{ or aryl})(N\text{-}cyclohexylamino})]$ carbene complexes, however, do not show the presence of isomers. This may arise from the bulkiness of the N-substituted group.

We have no direct means to distinguish between the two isomers. However, it is known that the predominant isomer in the metal carbene complexes is generally the one with the least steric interaction within the carbene groups.^{4,5)} Examination of molecular models of the carbene complexes suggested that the *cis* isomer had less steric interaction than the *trans* isomer.

The ratio between *cis* and *trans* isomers does not depend on the solvents and temperatures ($\leq 100 \,^{\circ}$ C), showing restricted rotation about the C_{earb}-nitrogen bond (Table 3). Evidence of restricted rotation about C_{earb}-heteroatom bonds has also been obtained, *e.g.*, in the series *trans*-[MX{C(NHR)Q}L₂]ClO₄ (where M= Pt or Pd; R=Ph or *p*-CH₃C₆H₄; Q=PhNH, EtNH, CH₃O or EtO; L=PEt₃, PPhMe₂, or AsMe₃; X=Cl or Br).^{18,19})

Iron Carbene Complexes. The reaction of η - $C_5H_5Fe(CO)_2[C(CH_2C_6H_4X-p)=NC_6H_{11}]$ (X=H or Cl) with HBF₄ proceeds with protonation at the imino nitrogen atom to give the cationic carbene complex in nearly quantitative yield, which was characterized by the infrared N-H stretching frequency. The reaction of this compound with CH₃ONa or PhLi occurs readily with deprotonation to regenerate the parent imino type complex (Eq. (3)).

$$\eta\text{-}C_{5}H_{5}Fe \xrightarrow{CO} \xrightarrow{HBF_{4}} \left[\eta\text{-}C_{5}H_{5}Fe \xrightarrow{CO} \right]^{+}BF_{4}^{-}$$

$$C-R \xrightarrow{CH_{3}ONa} C-R \xrightarrow{R} NHC_{6}H_{11}$$

$$(3)$$

The proton NMR spectra of the carbene complexes at room and low temperatures (≥ -60 °C) do not

Table 2. Analytical and spectroscopic data of nickel carbene complexes, η -C₅H₅Ni(CNR)[C(R¹)NHR]BF₄

R R ¹	Yield	Mp ^{a)}	Analyses,	Analyses, Found (Calcd)			IR (cm ⁻¹)b)		
K	R1	(%)	$(^{\circ}\mathbf{C})$	$\widehat{\mathbf{c}}$	H	N	N-H	C≣N	C-N
C_6H_{11}	Ph	78	113—115	60.98 (60.83)	6.40 (6.62)	5.14 ^{c)} (5.25)	3246 3146	2199	1572
$\mathrm{C_6H_{11}}$	$p ext{-ClC}_6 ext{H}_4$	82	151—153	57.25 (57.14)	5.83 (6.04)	5.06° (4.94)	3246 3148	2200	1577
C_6H_{11}	CH_3	78			h)		3235 3143	2231	1575
$(\mathrm{CH_3})_3\mathrm{C}$	Ph	69	135—138	55.54 (55.44)	6.31 (6.42)	6.20 (6.16)	3233 3143	2175	
$(\mathrm{CH_3})_3\mathrm{C}$	$p ext{-ClC}_6 ext{H}_4$	61	157—159	51.56 (51.54)	5.66 (5.77)	5.63 (5.72)	3248 3152	2171	1578

R	NMR	(ppm) in CDCl ₃ d)
K	$\widehat{\mathrm{C_5H_5}}$	Other signals
C_6H_{11}	5.38	2.22—1.05(c, C_6H_{10}), 4.02—3.70(b, C_6H), 4.80—4.44(b, C_6H) 7.6—7.3(c, m -, p -H), 8.0—7.78(c, o -H), 10.18—9.7(b, NH)
$\mathrm{C_6H_{11}}$	5.37	2.30—1.1(c, C_6H_{10}), 4.03—3.6(b, C_6H), 4.89—4.45(b, C_6H) 7.64(q, J_{AB} =8.4 Hz, C_6H_4) ^{e)} , 10.3—9.8(b, NH)
$\mathrm{C_6H_{11}}$	5.42	2.16—1.2(c, C_6H_{10}), 2.63(s, CH_3), 4.0—3.7(b, C_6H) 4.54—4.07(b, C_6H), 10.7—9.4(b, NH)
$(\mathrm{CH_3})_3\mathrm{C}$	5.37 ^{c)} 5.26	1.42(s, $(CH_3)_3CN$), 1.77(s, $(CH_3)_3CN(H)$), 8.04—7.30(c, Ph) 1.46(s, $(CH_3)_3CN$), 1.53(s, $(CH_3)_3CN(H)$), 10.35—9.4(b, NH)
$(CH_3)_3C$	5.36 ^{g)} 5.24	1.43(s, $(CH_3)_3CN$), 1.76(s, $(CH_3)_3CN(H)$), 7.64(q, $J_{AB} = 9 \text{ Hz}$, C_6H_4) ^{e)} 1.45(s, $(CH_3)_3CN$), 1.52(s, $(CH_3)_3CN(H)$), 10.8—9.74(b, NH)

a) Decomposed on melting. b) KBr disk. c) 1/3 C₆H₆ is contained. d) c=complex, b=broad, s=singlet, q=quartet. e) Center of AB quartet. f) Isomer ratio (in CDCl₃); 3:1. g) Isomer ratio; 1.74:1 (in CDCl₃), 1.7:1 (in DMSO). h) Pure product was not obtained.

Table 3. Isomer ratio of $\eta\text{-}C_5H_5\mathrm{Ni}[\mathrm{CNC}(\mathrm{CH_3})_3]$ - $[\mathrm{C}(R)\mathrm{NHC}(\mathrm{CH_3})_3]\mathrm{BF_4}$

R	Temp. (°C)	Solvent ^{a)}	Isomer ratio
Ph	25	CDCl ₃	3:1
Ph	25	DMSO	2.9:1
Ph	63	DMSO	3:1
$p\text{-ClC}_6H_4$	25	$CDCl_3$	1.74:1
$p\text{-ClC}_6\mathrm{H}_4$	25	DMSO	1.7:1
$p\text{-ClC}_6\mathrm{H}_4$	56	DMSO	1.8:1
$p ext{-}\mathrm{ClC}_6\mathrm{H}_4$	84	DMSO	1.8:1

a) DMSO = $(CD_3)_2$ SO.

show the presence of any isomers. Consideration of molecular models indicates that the predominant isomer is the *cis* form similar to the above mentioned nickel complexes.

The two C–O stretching frequencies appear within the range 1958—2043 cm⁻¹, 43—26 cm⁻¹ higher than the value of ν (CO) of the parent complexes. They decrease in the order CO, RNC, PPh₃, and C(CH₂Ph)-NHC₆H₁₁ for L in the complexes [η -C₅H₅Fe(CO)₂L]X (X=BF₄ or PF₆), as shown in Table 5. The decrease is probably comparable with the order of the enhanced donor property of L.

The cyclic neutral monoamino carbene complexes react also with HBF₄ to give the cationic bisamino carbene derivatives (Eq. 4).

CO
$$\eta\text{-C}_{5}H_{5}Fe - C=NC_{6}H_{11} \xrightarrow{\text{HBF}_{4}} \xrightarrow{\text{base}}$$

$$\begin{array}{c}
C \\
R^{2}NH-C \\
C \\
R
\end{array}$$
CO
$$\begin{bmatrix}
\eta\text{-C}_{5}H_{5}Fe - C=N \\
R^{2}NH-C \\
C-NHR^{1}
\end{bmatrix}^{+}BF_{4}^{-}$$
(4)

The infrared spectra show the NH-stretching frequencies in the range 3654—3097 cm⁻¹. In the proton NMR spectra the resonances due to the NH groups appear at *ca.* 6.7 (2H) and 9.8 (1H) ppm as two broad signals.

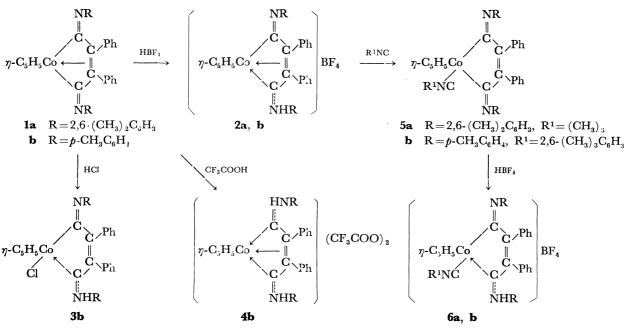

Diamino carbene complexes lose a proton again to regenerate the parent complexes by treatment with

Table 4. Analytical and spectroscopic data of iron carbene complexes $[\eta\text{-}C_5H_5Fe(CO)(L)]BF_4$

L	Yield	Yield Mp	Analysis	Found	(Calcd)	IR (cm ⁻¹)a)		
L	(%)	$(^{\circ}\mathbf{C})$	$\hat{\mathbf{c}}$	Н	N	N-H	C≡O	
$(\mathrm{CO})\{\mathrm{C}(\mathrm{CH_2Ph})\mathrm{NHC_6H_{11}}\}$	85	122—123	54.45 (54.23)	5.26 (5.20)	3.08 (3.01)	3275 3180	2042 1959	
$(\mathrm{CO})\{\mathrm{C}(\mathrm{CH_2C_6H_4Cl}\text{-}\rho)\mathrm{NHC_6H_{11}}\}$	92	134—136	50.67 (50.49)	4.61 (4.64)	2.92 (2.80)	3226 3118	2043 1958	
$[(\mathrm{CNHC_6H_{11}})\{\mathrm{CNHC}(\mathrm{CH_3})_3\}(\mathrm{CPh})(\mathrm{CNHC_6H_{11}})]$] 63	151—153	59.42 (61.06)	7.01 (7.05)	6.53 (6.68)	3654 3540 3215 3097	1923	
$[(\mathrm{CNHC_6H_{11}})(\mathrm{CNHC_6H_{11}})(\mathrm{CH})\{\mathrm{CNHC}(\mathrm{CH_3})_3\}]$	70	207—209	56.38 (56.45)	7.25 (7.29)	7.38 (7.60)	3418 3374 3283	1928	

L		NMR (ppm) ^b
L	$\widetilde{\mathrm{C_5H_5}}$	Other signal
$(\mathrm{CO})\{\mathrm{C}(\mathrm{CH_2Ph})\mathrm{NHC_6H_{11}}\}$	4.77	2.3—1.0(b, C_6H_{10}), 4.55—4.05(b, C_6H), 4.43(s, CH_2), 7.6—7.16(c, Ph)
$(\mathrm{CO})\{\mathrm{C}(\mathrm{CH_2C_6H_4Cl}\text{-}\rho)\mathrm{NHC_6H_{11}}\}$	4.67	2.3—1.0(b, C_6H_{10}), 4.55—4.0(b, C_6H_4), 4.45(s, CH_2), 7.55—7.1(c, C_6H_4)
$[(\mathrm{CNHC_6H_{11}})\{\mathrm{CNHC}(\mathrm{CH_3})_3\}(\mathrm{CPh})(\mathrm{CNHC_6H_{11}})]$	5.30	$\begin{array}{l} 1.05 (s, \ (CH_3)_3), \ 2.3 - 0.8 (b, \ C_6H_{10}), \\ 4.35 - 3.8 (b, \ C_6H), \ 7.7 - 7.4 \ \ and \ \ 7.25 - 7.05 (c, \ Ph), \\ 8.1 - 7.8 (b, \ NH, \ 2H), \ 10.2 - 9.85 (b, \ NH) \end{array}$
$[(\mathrm{CNHC_6H_{11}})(\mathrm{CNHC_6H_{11}})(\mathrm{CH})\{\mathrm{CNHC}(\mathrm{CH_3})_3\}]$	5.48	$\begin{array}{llllllllllllllllllllllllllllllllllll$

a) KBr disk. b) Measured in CD₃COCD₃. b=broad. s=singlet. c=complex.

Scheme 1. Reaction of cobalt complexes.

Table 5. Infrared spectra of $[\eta - C_5H_5Fe(CO)_2L]X$

L	X	$v_{\rm C=0} \ ({\rm cm}^{-1})^{a}$	Ref.b)
CO	PF_6	2120, 2070	1
CH ₃ NC	PF_6	2079, 2037	2
PPh_3	PF_6	2055, 2010	1
PPh_3	BF_4	2057, 2014	3
$C(CH_2R)NHC_6H_{11}$	BF_4	2043, 1958	This paper

a) Measured in CH_2Cl_2 . b) 1) P. M. Treichel, R. L. Shubkin, K. W. Barnett, and D. Reichard, *Inorg. Chem.*, 5, 1177 (1966). 2) R. J. Angelici, P. A. Christian, B. D. Dombek, and G. A. Pfeffer, *J. Organometal. Chem.* 67, 287 (1974). 3) B. D. Dombek and R. J. Dombek and R. J. Angelici, *Inorg. Chim. Acta*, 7, 345 (1973).

CH₃ONa or NaOH.

Cobalt Carbene Complexes. The reaction of organocobalt complexes are summarized in Scheme I. η-Cyclopentadienyl-2,5-di(N-2,6-dimethylphenylimino)-3,4-diphenylcobaltacyclopentene (1a) takes up readily a proton to give the cationic carbene complex (2a), when reacted with a large excess of HBF₄ in benzene or NH₂Cl₂ at room temperature. The infrared spectrum shows three bands at 1769 (C=N), 1630 (C=O), and 1587 (O-N) cm⁻¹, higher than those for the parent complex (1a). In addition to these, a new weak absorption due to the NH stretching frequency appears at 3203 cm⁻¹. The high frequency due to the C-N double bond suggests the highly strained five-membered

	R	\mathbb{R}^1	Yield	$\mathrm{Mp^{a)}}$	Analyses Found (Calcd)		
	K	K-	(%)	(°Ĉ)	$\hat{\mathbf{c}}$	H	N
	Type I						
2a	$2,6-(CH_3)_2C_6H_3$		85	210—212	67.37 (68.12)	5.01 (5.25)	4.37 (4.23)
2b	$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$		92	—167	67.39 (67.33)	4.83 (4.84)	4.37 (4.49)
	Type II						
3ь	$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$		56	159—161	73.67 (73.36)	5.02 (5.28)	5.01 (4.89)
	Type III						
4b	$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$		85	167—170	55.95 (56.05)	3.59 (3.67)	3.14° (3.19)
	Type IV						
6a	$2,6$ - $(CH_3)_2C_6H_3$	$(\mathrm{CH_3})_3\mathrm{C}$	73	123—126	69.75 (69.95)	5.20 (5.20)	5.43 (5.56)
6Ъ	$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$	$2.6\text{-}(\mathrm{CH_3})_2\mathrm{C_6H_3}$	78	105—107	68.43 (68.58)	5.72 (5.89)	5.82 (5.71)

		IR $(cm^{-1})^{b}$				MR (ppm) in CDCl ₃ d)
	N-H	C=N	C=C	N≡C	$\widetilde{\mathrm{C_5H_5}}$	Other signals
	Type I					
2a	3203	1769	1630		5.35(s)	$2.16(s, CH_3), 1.78(bs, CH_3), 2.36(bs, CH_3), 7.80-6.5(c, Ph, C_6H_3), 12.2-11.84(b, NH_3)$
2b	3261	1758	1639		5.34(s)	2.16(bs, p -CH ₃), 2.40(bs, p -CH ₃), 8.00—6.8(c, Ph, C ₆ H ₄), 12.6(b, NH)
	Type II					
3b	3260	1628	1594		4.49(s)	$7.61(s, CH_3), 8.0-6.9(Ph, C_6H_4)$
	Type III					
4b	3273	1772	1691		4.82(s)	$2.50 (s, p-CH_3), 7.7-7.0 (c, Ph, C_6H_4), 11.2-10.8 (b, NH)$
	Type IV					
6a	3247	1632	1587	2192	4.73(s)	1.68(s, CH_3), 2.26(b, CH_3), 7.36—6.6(c, Ph , C_6H_3)
6b	3260	1632	1591	2152	4.47(s)	2.25(s, CH_3), 2.39(s, CH_3), 7.28—6.57(c, C_6H_3 , C_6H_4)

a) Decomposed on melting. b) KBr disk. c) One mole of CF₃COOH is contained. d) s=singlet. bs=broad singlet. c=complex.

ring structure, resulting from the coordination of the C-C double bond to the cobalt atom as well as $1a.^{14}$. The proton NMR spectrum shows the presence of the two isomers in the ratio 2:1. The resonances due to the ortho-methyl groups occur at 2.16(s), 1.78(bs), and 2.36(bs) ppm in the relative intensity of 6:4:2, respectively. The first resonance is assignable to the methyl groups of the N-substituted imino group, and the latter two to those of the isomeric N-substituted amino one. The four structures for the compound (2a) are illustrated as follows:

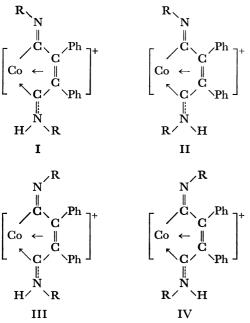


Fig. 1. Possible structures of **2a**. η-C₅H₅ and BF₄⁻ groups are omitted for clarity, where R is 2,6-dimethylphenyl group.

An X-ray crystallographic examination of η-C₅H₅Co-[-C(=NPh)-CPh=CPh-C(=NPh)-]¹⁴) as an analog of **1a** has shown that the N-phenyl group has the cis orientation to cobalt with respect to the C-N double bond. Accordingly, we tentatively assign two isomers to I and II. The interconversion between I and II was observed by various temperature PMR spectra. The ortho-methyl protons of the N-2,6-dimethyl-phenylimino group of two isomers appear at 1.78 and 2.36 ppm as relatively broad singlet at 17 °C. They became broader and their chemical shift difference became smaller on heating. At 63 °C, the spectrum consisted of one single broad signal. Finally the broad signal turned into a sharp singlet (2.06 ppm) above ca. 75 °C. These changes in PMR patterns are reversible.

Kinetic parameters for the rotation barrier about the $C_{\rm carb}$ -N bond²⁰⁾ were determined by PMR line-broading technique of variable temperature PMR spectra. The approximate activation energy was 4.8 kcal/mol, and frequency factor, $1.5 \times 10^5 \, \rm s^{-1}$; the former value is lower than that of $C_{\rm carb}$ -O bond (11.5—13.8 kcal/mol) for $Cr[C(OCH_3)(C_6H_4X)](CO)_5$.²¹⁾ The relatively low activation energy, in comaprison with those of rotation barriers of organic amides (6.8—7.8 kcal/mol),²²⁾ may be ascribed to the presence of a labile amino-

proton, which leads to facile deprotonation on successive treatment with H₂O.

η-Cyclopentadienyl-2,5-di(N-p-tolylimino)-3,4-diphenylcobaltacyclopentene (1b) also undergoes protonation with HBF₄ to give the carbene complex (2b), which however shows an absence of isomers. When 1b was allowed to react with aqueous HCl, a neutral carbene complex (3b) is formed. The infrared spectrum of 3b shows three significant absorptions at 3260(NH), 1628(C=N), and 1594(C=C) cm⁻¹. The absorption due to the C-N double bond is 102 cm⁻¹ lower than that (1730 cm⁻¹) for the parent compound, suggesting the absence of intramolecular coordination of the double bond to the cobalt atom. The proton NMR spectrum in CDCl₃ shows a sharp singlet at 2.39 ppm due to two para-methyl groups. The origin for this singlet may arise either (1) from an accidental degeneracy of two chemical shifts or (2) from the fluxional behavior of hydrogen in the PMR time scale. The para-methyl groups in the PMR spectrum of this complex in CD₃COCD₃ retain a sharp singlet resonance, whereas 2b shows two respective singlets at 2.16 and 2.40 ppm for the two para-methyl groups. In the temperature variations of the PMR spectra of 3b, a sharp singlet changes to a relatively broad singlet at ca. -35 °C, which is converted to a doublet at ca. $-60\,^{\circ}\mathrm{C}$. These changes are reversible. These observations are consistent with predictions for the fluxional behavior of hydrogen. Similar behavior has been observed in the carbene complex of platinum.23)

The compound **1b** reacts readily with CF₃COOH in CH₂Cl₂ to give **4b**. The infrared spectrum shows two bands at 3170 and 3125 cm⁻¹ (NH) and three peaks at 1772, 1707, and 1691 cm⁻¹ (C=O). The PMR spectrum in CDCl₃ shows two sharp singlets at 2.50 and 4.83 ppm due to the *para*-methyl and cyclopentadienyl groups, respectively.

When 2a was treated with t-butyl isocyanide, both deprotonation and release of the coordinated double bond occur to give 5a, characterized by the absence of $\nu(NH)$ and the presence of $\nu(N\equiv C)$ at 2152 cm^{-1} . The compound 5a takes up a proton again to give the cationic carbene complex (6a), when treated with HBF₄. The analogous type of complex (6b) is obtained by the reaction of 5b with HBF₄. The infrared spectra of these compounds (6a) and 3260 cm^{-1} (for 6b) due to the N-H stretching frequency. The C=N stretching frequencies appear at 1632 and 1634 cm^{-1} , respectively. They are within the range of the normal carbon–nitrgon double bonds, suggesting the absence of coordination of the carbon–carbon double bond to the cobalt atom.

In their PMR spectra the four *ortho*-methyl groups for **6a** and the two *para*-methyl ones for **6b** show a broad singlet at 2.26 ppm and a sharp singlet at 2.38 ppm, respectively. The respective singlets are converted to doublets consisting of the relative intensity of 1:1 in the low temperature PMR spectra, again showing the proton exchange in the PMR time scale as well as that in the neutral complex (**3b**). The observation of the fluxional behavior arising from rapid migration of a proton seems to originate from the planarity of the five-membered ring system containing cobalt.

References

- 1) Part XII. K. Aoki and Y. Yamamoto, Inorg. Chem. in press.
- 2) E. O. Fischer and Maasböl, Angew. Chem., Int. Ed. Engl., 3, 580 (1964).
 - 3) E. O. Fischer, Pure Appl. Chem., 24, 407 (1970).
- 4) F. A. Cotton and C. M. Lukehart, Progr. Inorg. Chem., **16**, 487 (1972).
- 5) D. J. Cardin, B. Cetinkaya, and M. F. Lappert, Chem. Rev., 72, 545 (1972).
- 6) M. L. H. Green, L. C. Mitchard, and M. G. Swanwick, J. Chem. Soc. A, 1971, 794.
- 7) E. O. Fischer and A. Riedel, Chem. Ber., 101, 156 (1968).
- 8) P. M. Treichel, J. J. Benedict, R. W. Hess, and J. P. Stenson, J. Chem. Soc. D, 1970, 1627.
- 9) M. F. Lappert and A. J. Oliver, J. Chem. Soc. Dalton, **1974**, 65.
- 10) P. B. Hitchcock, M. F. Lappert, G. M. McLaughlin, and A. Oliver, ibid., 1974, 68.
- 11) Y. Yamamoto, H. Yamazaki, and N. Hagihara, This Bulletin, 41, 532 (1968); J. Organometal. Chem., 18, 189 (1969).
- 12) Y. Yamamoto and H. Yamazaki, Inorg. Chem., 13, 2145 (1974).
- 13) Y. Yamamoto, K. Aoki, and H. Yamazaki, J. Amer.

Chem. Soc., 96, 2647 (1974).

- 14) H. Yamazaki, K. Aoki, Y. Yamamoto, and Y. Wakatsuki, ibid., 97, 3546 (1975)., 22nd Symposium on Organometal. Chem. Japan. October 16-18, 1974. Preceeding p. 67.
- 15) I. Ugi and R. Meyer, Chem. Ber., 93, 239 (1960).16) When the reaction mixture was washed several times with water, the resulting carbene complex was reformed to the parent one.
- 17) H. S. Gutowsky and R. H. Holm, J. Chem. Phys., **25**, 1228 (1956).
- 18) M. H. Chisholm and H. C. Clark, Chem. Commun., **1971**, 809.
- 19) B. Crociani and R. L. Richards, J. Chem. Soc. Dalton, **1974**, 693.
- 20) The chelating carbene ligand of 2a has the advantage of eliminating ambiguities or complications arising from rotation about the M-C (carb) bond.
- 21) J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High Resolution Nuclear Magnetic Resonance Spectrscopy," Vol. 1, Pergamon Press, p. 556.
- 22) E. O. Fischer, C. G. Kreiter, H. J. Kollmeier, J. Muller, and R. D. Fischer, J. Organometal. Chem., 28, 237 (1971).
- 23) W. M. Butler, J. H. Enemark, J. Parks, and A. Balch, Inorg. Chem., 12, 451 (1973).